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Stéphane Zuckerman
Guang R. Gao

CAPSL Technical Memo 123

June 2013

Copyright c© CAPSL at the University of Delaware

University of Delaware • 140 Evans Hall •Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu





Contents

1 Introduction 6

2 Background 7
2.1 Traleika Glacier Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Traleika Glacier Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Codelet Program Execution Model and System Software Model . . . . . . . . . . 10
2.4 Challenges and Opportunities for Self-awareness . . . . . . . . . . . . . . . . . . 10

3 Requirements for Self-adaptation 10
3.1 Types of Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Role of the PMU in Exascale Systems . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Energy Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Performance Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Resiliency Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Simulator and System Runtime Status 14
4.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Performance Monitoring Unit . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.3 Power Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.1 Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Problem Formulation 18
5.1 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Research Plan 20
6.1 Research Venues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.1.1 Fine-grained Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1.2 Coarse-Grain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 Addressing Tool-chain Deficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.1 Simulator Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.2 Runtime Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Related Work 23
7.1 Application Centric Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 Component Centric Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.3 System Centric Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.5 Limitations of Current Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3



List of Figures

1 Generalized ODA Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Traleika Glacier Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Traleika Glacier Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Mapping Traleika Glacier to an ODA Mechanism . . . . . . . . . . . . . . . . . . 19
5 Adaptation within Traleika Glacier . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4



Abstract

High-performance systems are evolving to a point where performance is not the sole

relevant criterion anymore. The current execution and resource management paradigms are

no longer sufficient to ensure correctness and performance. Power requirements are presently

driving the co-design of HPC systems, which in turn sets the course for a radical change

in how to express the need for scarcer and scarcer resources, as well as how to manage

them. We believe that systems will need to become more introspective and self-aware with

respect to performance, energy, and resiliency. To this end, this document explores the

major hardware requirements we believe are central to enabling introspection, the types

of interfaces and information that will be needed for introspective system runtimes, and

discusses a research path toward a self-aware system for exascale architectures.
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1 Introduction

As we move toward an exascale future with ever expanding capacities in terms of both cores

and resources, we have reached a point in computing where current execution paradigms will

no-longer suffice. High performance computing systems have begun to approach a point where

the ever growing multiplicity of transistor counts and components is not sustainable in terms

of energy consumption. It has been said that at the current rates, extrapolated into the future,

that an exascale computer system would consume over 1.5 GW of power [34]. These ever

expanding power requirements necessarily result in the need for a fundamental and radical shift

in terms of programmability and adaptation. We believe that systems will need to become

hierarchically introspective and self-aware to be able to adapt to these steep performance and

energy requirements.

Problem Statement There are number of key facets that need to be addressed to enable

a truly introspective and self-aware system capable of performing well and efficiently. The

first is that a form of co-design needs to occur in terms of hardware and software. Exascale

hardware needs to support a number of integral features to enable controlling system software

to monitor and adapt to the current system state and any requirements passed to it in the form

of power or performance. In broad terms, there will need to be some form of an observe-decide-

act (ODA) loop to monitor, make decisions, and to control both the hardware and software

aspects of a system. The second is that the system needs to be capable of adapting for power

and performance while at the same time maintaining correct and reliable operation. It is key

to recognize that these conflicting goals form a basis for a multi-variable problem which will

be further complicated by the need to run multiple programs on a system with thousands of

components. There is an open question on how to self-adjust and to meet these goals. The

third facet is to propose a hierarchical method to control the system using these ODA loops and

the co-designed hardware and software features within the system. This document primarily

serves to discuss the first two facets and leaves the third for future discussion. As a second

inter-related objective, we discuss the current Traleika Glacier (TG) toolchain as it pertains to

our path toward researching and demonstrating self-adaptation.

As mentioned, adaptation will need to occur using ODA loops as shown in Figure 1. These

are a type of self-feedback loop consisting of three stages where each stage feeds back to another

stage in the process. The observe stage takes in inputs from the system environment. The

Decide stage is where decisions are made based upon observed information and possibly some

form of external input. In this context, a decision is answering the question of what to do in

the system not how to achieve the objective. The act stage translates a decision into a set of

actions which are then committed by adjusting some form of actuators. This stage answers

the question of how to adapt. For instance, this could be to adjust core frequencies or some

combination of actuators or knobs. In section 6.1, we will discuss how ODA loops directly map

to the self-adaptive mechanisms of the TG architecture.

The rest of this document is organized into a discussion of the various steps involved in
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Figure 1: A generalized ODA loop consisting of observe, decide, and act stages.

moving toward a self-aware system for exascale architectures. In section 2, we discuss the

background of the TG architecture and program execution models. In section 3, as a form of

co-design, we evaluate important hardware requirements for aiding an introspective software

system in self-adaptation. In section 4, we evaluate the current TG toolchain to identify any

deficiencies that need to be addressed moving forward. In section 5, we expand our problem

statement. In section 6, we discuss a research plan in moving toward self-adaptation. This

plan is two-fold and involves addressing iteratively both the deficiencies in the tool chain and

a primary goal of demonstrating adaptation within TG architecture. Finally, in section 7, we

discussion related work in the field.

2 Background

This section is devoted to a discussion of the Traleika Glacier architecture, the codelet execution

model, and the challenges and opportunities for self-awareness within exascale architectures.

2.1 Traleika Glacier Architecture

The overall Traleika Glacier architecture [8, 10] is shown in Figure 2. At the lowest level, TG is

organized into blocks consisting of a Control Engine (CE), eight eXecution Engines (XEs), and

a block shared memory. This organization is designed to decouple algorithmic workload from

system monitoring and control. An XEs fundamental usage is to execute arbitrary code without
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Figure 2: The Traleika Glacier Architecture consists of heterogeneous cores in a hierarchical

configuration with network interconnects at each level, organized into blocks, clusters, and chips.

The sizes of memories and the amount units per chip and cluster are currently unspecified.

interruption. The CE on the other hand is designed to control and schedule work to a number

of local XEs within a given block. XEs and CEs are architecturally unique from one another.

Both XE and CE cores contains a register file (RF), instruction cache (ICache), scratchpad

memory (SPad), clock/power gate control unit, and network functionality. In addition, XEs

also feature a floating-point unit, as well as a performance monitoring unit (PMU). CEs, being

designed for control, contain an advanced programmable interrupt controller (APIC). The XEs,

being designed solely for execution, do not have logic to directly handle interrupts or traps and

instead any interrupts are offloaded to the CE within the block. The architecture itself is
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designed to operate at close to threshold voltages as well as to control the power and clocks of

functional units (FUs) within the system in order to minimize energy usage.

2.2 Traleika Glacier Toolchain
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GCC Binutils
CE 

Binary

XE 
Binary
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.c.clibxe

.c.c
User 

Program

Agent 
logs

Power 
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Scripts
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Figure 3: The Traleika Glacier Toolchain from program compilation to simulation output.

The Traleika Glacer toolchain is shown in Figure 3. In Traleika Glacier, XEs have a distinct

instruction set architecture (ISA) and as a result a special compiler and linker is used to produce

XE programs. As input, a special library providing basic functionality called libxe is compiled

and linked to a user program. The CE on the other hand uses an x86 binary produced from a

generic x86 compiler and linker. As input, the CE compiler takes a special library called libce

which implements the CE runtime. From there, the binaries are loaded into the the functional

simulator FSim. In order to simulate the TG architecture, FSim uses two distinct simulators

with a communication layer between them. QEmu is used to to simulate a CE and to run the

CE binary whereas xe-sim is used to simulate XEs and the different layers of memory. In the

simulation framework, each component is called an agent (each execution engine, block shared

memory, etc.) and log files are produced during a run for each agent with various levels of

logged information. This could be such information as standard output or detailed execution

information such as different types of operations, etc. From the logs, a power analysis can be

done to produce detailed energy usage information in the form of graphs for a given run of a

program.
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2.3 Codelet Program Execution Model and System Software Model

As we discussed in the previous section, the TG architecture will be hierarchical in nature

with numerous components. Coarse grain or monolithic approaches to adaptation do not befit

this type of architecture. We strongly believe that these types of program execution models

(PXMs) will be incapable of effective self-adaptation. Instead we believe that the focus should

be on using and incorporating fine-grained PXMs within a self-adaptation framework. There

have been number of discussions and effort specifically tailored to the TG architecture [20].

One such runtime is the Open Community Runtime (OCR) [33] effort designed to explore

various methods of high-core-count programming. UD has proposed and implemented their own

fine-grained codelet execution model [46, 47] for which several implementations exist [23, 39].

Moreover, the codelet model can be implemented using OCR as vehicle for exploring the model

within the TG architecture.

2.4 Challenges and Opportunities for Self-awareness

There are number of challenges in the move toward exascale architectures. Energy becomes

a primary and ever increasing issue because of the aforementioned multiplicity of components

and transistors. Moreover, current execution paradigms will no longer suffice in terms of either

performance or energy as communication and data access becomes prohibitively expensive be-

tween far memories and cores. This leads to the need for intelligent system runtimes designed

to minimize energy while also maximizing performance. Furthermore, this leads to the need for

additional hardware mechanisms to enable system runtimes to monitor system state efficiently

and accurately. The details of which will be discussed in the following section.

3 Requirements for Self-adaptation

In this section, we will discuss the underlying hardware requirements in order to implement

a self-adaptive system. Many of these will be integral toward enabling a self-adaptive system

software and others will simply improve or make its job easier in adapting. Primarily this

section serves as a “wish” list of features that we believe are important for adaptation in any

exascale architecture. However, before we discuss these requirements in detail, we will first

discuss the types of adaptation that we target followed by a discussion of the benefits of a

tailored performance monitoring unit

3.1 Types of Adaptation

As we mentioned briefly in section 1, when it comes to a self-aware system, there are a number

of types of adaptation that need to occur. These can be categorized broadly into three distinct

types of adaptation: adapting for energy or power consumption, adapting for performance, and

adapting for resiliency.
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Energy adaptation covers any decisions that take into account energy and power in some

manner. This can include such things as monitoring the energy usage of tasks directly or

indirectly as well as maintaining a given energy or power envelope. This can also include any

decisions that increase performance with a primary focus on reducing energy. An example of

energy adaptation would be to identify whether a task is utilizing specific FUs and to clock

or power gate them if they are not in use. Performance adaption covers any decision that has

a primary goal of increasing performance. Such decisions might take into account system and

network utilization as well as characterize tasks by the types of operations they are doing. For

example, this could be to identify whether a task is CPU bound, I/O bound, etc. Resiliency

adaptation covers any sort of detection and/or prevention of faults as well as the handling of

task recovery in the event of failure. Task recovery can entail a multitude of different features

such as task migration and memory redundancy.

While we will discuss all three types of adaption, the primary purpose of this document is

to focus on a path forward for demonstrating energy adaptation in the TG architecture. It is

important to note that there is necessary coupling between all three categories of adaptation.

An example of overlap between performance and energy adaptation is intelligently scheduling

tasks and movement of data to increase performance while at the same time reducing energy

consumption. An example of overlap between all three types of adaptation is building in

hardware support for the detection of data corruption. Without hardware support, a resilient

runtime would be forced to duplicate work and provide checksumming which increases energy

and decrease performance at the same time.

3.2 Role of the PMU in Exascale Systems

Before moving onto the detailed requirements in the subsequent subsections, we will discuss

the PMU as an important mechanism toward enabling adaptation. From an energy perspec-

tive, the counters can be combined with instruction energy cost metrics in order to indirectly

monitor energy. From the perspective of performance monitoring, the PMU can directly give

many different instruction count metrics that are useful in characterizing performance. From a

resiliency perspective, counts of correctable errors can be used to aid in proactively monitoring

for potential issues and as a mechanism to determine whether the system software should be

cautious with the work it is scheduling. Given a plethora of counters and the ability to run

them concurrently will greatly aid in information gathering for a self-adaptive system. As such,

it is our belief that the PMU will serve as the primary means of information gathering for both

performance and energy adaptation and will be one of the most important mechanisms of a

self-adaptive system.

3.3 Energy Requirements

For any large-scale computer system (including current petascale ones), the primary goal in

self-adaptation is to minimize energy consumption. As discussed previously, the PMU will be
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integral in this goal.

At the most basic level, the PMU provides various performance related metrics. This in-

cludes counts of various different instruction types such as local/remotereads, writes, ALU

operations, FPU operations, DMA operations, etc. These counts are useful directly for de-

termining the workload characteristics and optimality of running tasks (and of higher level

components in the system). For example, if the runtime system is able to determine that a task

is spending the majority of its time idling while waiting for remote memory through the usage

of some combination of remote read and DMA operations, it could clock gate the processor

running the task, while the data of the task is moved to a more localized memory. For another

example, through the count of FPU operations, the runtime system could determine that only

integer calculations are performed on a given XE, and thus decide to power-gate its FPU.

The PMU can also be used indirectly to estimate energy usage. This is possible if the

energy cost of various instructions and components in the system are known or estimable, and

an energy model is developed. Essentially, the costs of instructions could be combined with the

counts read from the PMU to form a picture about the overall energy usage. This information

would then be used in conjunction with specified power budgets to determine if actions need

to be taken in order to meet goals.

The TG architecture is expected to be capable of adjusting the state of FUs. The Ex-

tended Document Specification (EAS) for the TG architecture [10] states that this will be at

a functional unit block (FUB) granularity. To clarify, this is at a finer granularity than FUs,

meaning that individual sub-unit pipelines can be clock gated or power gated. We will discuss

this aspect in more detail in section 4.1.2. Here we focus on the granularity we believe is useful

for adaptation. At an individual core level, it is useful to be able to adjust both the clock

rates, and to power down unused cores in order to save energy. An example of the former is

simply adjusting the clock rates to meet a specified power budget. Another example outside

of the realm of energy only adaptation is that some cores may not be able to run at a full

clock-rate due to physical defects or the current thermal characteristics of the system. It may

be advantageous in this case to use the cores at a lower clock-rate than to simply put them

into a power-gated state. As a final motivating example, a self-adaptive runtime could identify

a case where the rate of data being streamed into a block is lower than the XE using the data

for computation. In this case, the computation XEs would need to idle waiting for the data.

The CE could identify this and then individually slow the clock rate of the XEs to match that

of the rate at which the data is being streamed in.

We believe it is advantageous to adjust at an even finer-granularity than simply the core.

One interesting motivation would be for task kernel hinting. Given a compiler with the capa-

bility to identify the types of instructions used by a task kernel and given mechanism for the

runtime to hook into this information, it could identify explicitly which units would not be used

by a given task and simply power gate them. Furthermore, the same strategy could be applied

at an even finer-granularity to turn off individual pipelines within FUs.

One alternative mechanism for hardware supported energy monitoring is the Running Av-
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erage Power Limit (RAPL) interfaces found in the Sandybridge, Ivybridge, and Haswell ar-

chitectures [16]. These directly provide energy/power information, power limiting, and policy

controls in the form of machine specific registers (MSRs). Using these interfaces, it is possible

to retrieve both power (watts) and energy (joules) directly as well as specify a goal in terms

of watts over a given time interval. Finally, these interfaces are able to give information about

the amount of time that a component has been throttled in order to meet a specified goal.

3.4 Performance Requirements

In X-stack, the system software will be responsible for task scheduling and resource allocation.

Thus it needs to be able to monitor performance in order to achieve adaptation. There are

various types of performance metrics that will be important. These can range from differ-

ent types of resource utilization (network, CPU, memory, etc.) to workload distribution, etc.

Characterizing sections of the system will require monitoring to be relatively fine-grained. We

believe that the ideal granularity is at the task level. We discussed previously some examples

of the dual energy/performance adaptations that can be yielded from PMU metrics. As we

mentioned, the key importance here is that the PMU is useful in determining the workload

characteristics and optimality of running tasks within the system.

Using the PMU events described, performance within the runtime can be evaluated. To

further motivate the usefulness of knowing this information, let us consider another example.

By knowing the frequency and types of memory counts, the system software can determine

network utilization and whether the communication is relatively localized. This information is

useful for determining how optimal the current task scheduling is in terms of performance and

energy efficiency. If for instance, the system software can determine that groups of tasks are

communicating frequently but are not localized to the same block, it could migrate the tasks

to one block in order to localize the network traffic.

3.5 Resiliency Requirements

Fault tolerance is one of the most important aspects of a self-adaptive system. Without proper

hardware support, the software will be unable to cope with failures or to meet goals in exascale

systems. Furthermore, the system software would necessarily be burdened with the detection

and prevention of faults through costly primitive means. This could potentially entail such

things as the duplication of tasks and verifying the results of all task computations within the

system. In short, lack of proper hardware support for resiliency will significantly affect other

aspects of self-adaptation.

It is our belief that the hardware must be able to detect faults within the components of

the system. The primary motivation for this is to minimize runtime scope and energy costs.

A system software burdened with the aforementioned details will be extensive and inefficient.

This leads not only to a high cost in software support, but also a reduction in energy efficiency
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and performance. For example, task duplication could force the same task to be re-run three

times simply to determine which set of components is faulty.

However, the hardware needs not only to detect and/or correct faults but also a means to

deliver information about the failure to the system software. It is absolutely essential for an

introspective system software to know which FUs have failed in order to reschedule any tasks

that require or depend on the failed hardware resources.

Even with proper hardware detection for faults, the software system is burdened by the need

to schedule tasks efficiently in a non-ideal environment. From a self-adaptive standpoint, one

of the primary tasks will be to achieve a known working state. On current generation systems,

the primary means by which this is achieved is through extensive quality control tests. In the

software stack of an extreme scale environment, a map of known permanently bad components

from quality of control testing will be essential for the system-software to learn and adapt as

quickly and efficiently as possible. This will yield a known good state on the start up of the

system without spending large amounts of energy determining which parts of the system are

bad and/or scheduling tasks to faulty components. This map would need to contain two types of

information: all components that fail under any circumstances, and components that fail under

certain known operating conditions. For example, the latter could contain Vdd requirements,

thermal requirements, limits to the number of XEs that can operate together, etc.

Another aspect of fault tolerance is proactive preventive measures that can be taken in

both hardware and software. For instance, if the system-software can identify components with

a high probability of failure, it can avoid scheduling critical tasks to those components. The

envisioned form of support is through the dual usage of error correction and the tabulation of

errors exposed through performance monitoring units. Given such details, the system-software

could keep track of the errors and use some form of built in risk assessment when scheduling

and allocating resources.

4 Simulator and System Runtime Status

This section will discuss the current status of the simulator (FSim) and system runtime with

respect to the hardware and software requirements we have identified as integral dependencies

for the implementation of an introspective and self-aware system runtime. We will first discuss

the simulator followed by the system runtime.

4.1 Simulator

The simulator carries a heavy burden in terms of what it must support in order to enable the

study of a self-adaptive system. It must be capable of providing both performance monitoring

and energy monitoring interfaces to the runtime software as well as power management inter-

faces. Moreover, it must be able to provide a mechanism to quantify the energy usage of a
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program. This section will discuss in detail the different requirements for the simulator as well

as the current state of the implementation with respect to those requirements.

4.1.1 Performance Monitoring Unit

The simulator needs to support a number of introspective capabilities and interfaces. The first

and most important of these is the PMU as we discussed in section 3. For completeness sake,

we repeat here that the PMU must be capable of counting many different types of instructions

(Floating point, DMA, remote memory, local memory, etc). These will be the primary method

for an introspective system to identify the workload characteristics of running code at a fine-

grained level. Interface wise, PMU registers will need to support both polling and interrupt

triggering as well as the ability to specify and enable threshold triggers. For example, one

might track remote load operations by enabling the remote load counter and specifying a CE

interrupt to occur every N operations. The level of granularity of PMUs (per XE, per Block,

. . . ) is an important consideration because it limits the level at which an introspective runtime

can characterize the workload of the system. It is our belief that both the hardware knobs

(clock gating, power gating, etc.) and software knobs (scheduling, data movement, etc.) should

be taken into account when considering the level of PMU granularity. For example, even

without the ability to clock-gate individual XEs, decisions about where to schedule tasks and

whether to localize data can still be made using information gathered from XE level PMUs.

Moreover, at this granularity, event driven tasks (EDTs) can be characterized by whether they

are computationally intensive, I/O intensive, or some combination in-between. This information

could feasibly be used to identify which blocks to schedule future EDTs on or even future

instantiations of the same EDT type.

The simulator currently contains a rudimentary PMU with support for register polling using

memory mapped I/O. Feature wise it lacks support for threshold triggering and thus cannot

wake a CE when a specific event count is reached. The EAS [10] specifies that an XE can either

enter a clock gated state or continue executing instructions depending on the PMU trigger

control register configuration. In the latter case, it is important to note that the PMU alarm

condition can be overwritten by further alarms. This will be discussed in more detail in section

6.2.1.

There are also a number of timing limitations when accessing PMU registers within the

simulator. The EAS states the following timing constraints for PMU counter access:

1. The end of the current clock period will reflect the PMU counters that correspond to the

state of the machine at the end of the prior clock period,

2. a read of a PMU register will occur in the top-half of the cycle in which the read occurs

and this read will return the state of the register from the end of the prior cycle,

3. a counter update or a software write to a PMU register occurs in the bottom-half of the

cycle in which a write occurs,
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4. in the case of a conflict between a core unit reporting a PMU event conflicting with a

software-based write instruction, the software-based instruction always over-writes any

other input to determine the final state, and

5. there is no promise of single-cycle access to the PMU registers; however, the timing to

the PMU registers will be uniform such that whatever latency is incurred is the same

regardless of which PMU register is involved.

Although the aforementioned constraints will hold true in the hardware implementation,

the simulator lacks cycle accurate timing and thus these conditions will not hold true. Simply

put there are no guarantees as to the cycle-accuracy or uniform latencies of reads and writes to

PMU registers within the simulator. Although we do not anticipate these specific limitations to

be of a large concern for our demonstration of self-adaptation, they will no doubt be important

for future consideration.

4.1.2 Power Management

The TG architecture will be capable of adjusting the state of FUs. In section 3, we previously

motivated our beliefs as to the granularity that this should be adjustable at. In this section,

we will discuss adjusting the state of FUBs as a function of the simulator.

An XE has both FUB clock and power controls. These allow fine-grained control over

clocking and powering specific FUB pipelines (e.g. 16-bit Integer Mul pipeline) as well as

coarser grain controls over Mega-Block pipelines (e.g. 32-bit integer pipeline). There are also

flags to control the power to local caches and scratchpad memory. Currently the simulator does

not support controlling clock/power states at this granularity. Moreover, there have been some

concerns as to how to accurately model the energy usage at this level within the simulator.

Each major component in the system (XE, CE, Block SRAM, Intra-block network ports,

and Inter-block network port) has a set of MSRs to control the clock and power states of a

given component. Depending on the component, the state can be adjusted at a finer-granularity.

For instance, the power to specific memory banks of block shared memory can be controlled.

Currently in the simulator, it possible to clock gate XEs and CEs; however, we do not currently

know the status of the support for clock gating and power gating other components. It is worth

noting that for self-adaptive purposes accurate power modeling is needed to demonstrate the

importance of adjusting component state. This will be discussed in the following section.

4.1.3 Power Modeling

Power modeling is another important aspect to quantifying the benefits of self-adaptation. In

order to effectively demonstrate the benefits of self-adaption for energy, the simulator will need

to measure both dynamic and static energy. At a high level, quantifying dynamic energy allows

us to see the impact of instruction costs, different component costs, and network communication
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costs. This information is useful for determining the optimality of task scheduling and data

distribution. However, only measuring dynamic energy is unrealistic as it does not take into

account the leakage costs of keeping components powered or the costs of the logic to keep

components clocked and transitioning. Given that the TG architecture will operate at close

to the threshold voltage, this becomes center stage because up to fifty percent of the energy

costs can come from the leakage in idle components. As such, it is imperative that there be a

way to quantify static energy costs. From an introspective perspective, measurements of static

energy allow us to infer the benefits or costs of dynamically adjusting an FUs states as a form

of self-adaptation.

Currently, the simulator is capable of measuring the dynamic energy usage of instructions,

DMA, cache, scratchpad, network communication, memory, memory controller, and off chip

communication in terms of joules or joules per operation [28, 41]. However, currently, static

leakage energy is only modeled as an estimated constant multiple of the total dynamic energy.

As mentioned above this is an unrealistic assumption given the aforementioned assumptions

regarding the TG architecture and the fact that FUs can be put into clock gate or power gate

states dynamically.

4.2 Runtime

This section will discuss the current status of the runtime as method to implement and demon-

strate self-adaptation. Fundamentally, at the block level, the CE runtime will be responsible for

observing and acting upon any gathered information. In order to do this, a CE will take on the

role of a decision engine that operates within a localized observe-decide-act loop. There needs

to be interfaces in place for information gathering, and for communication between any FUs

that a decision engine is making decisions for. At a higher level, there needs to be mechanisms

in place for communication between different decision engines in order to communicate system

state. This will be relied heavily upon in the future for non-localized self-adaptive decisions.

4.2.1 Communications

XE-to-CE Within a block, there exists a synchronous message subsystem for communication

between a CE and the XE. When an XE needs to communicate with the CE, it will write the

message to a designated slot in memory reserved for messages, signal the CE to wake up,

and then enter a clock gated state to wait for the CE to process the message. The CE will

then process the message and wake the XE once it is done. Any self-adaptive mechanisms

that originate from the XE outside of the CE’s observation will need to occur through this

communication channel.

CE-to-CE At the inter-block level, communication between CEs occurs using an asynchronous

doorbell system. CEs can send different types of messages to one another using this system.

When a CE wants to send a message, it will write it to an available doorbell slot located within
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a remote CEs local memory, “ring” the doorbell, and then continue to do other operations. Be-

cause the communication is asynchronous, the sender can specify that an acknowledgement be

sent back once a given message is processed by the receiving CE. Using this mechanism, callback

subroutines can be run on the sender once an ACK is received and processed by the sender.

From a self-adapting perspective, aggregated and generalized information about local state will

be sent through this communication channel. For example, the relative health and utilization of

a block can be communicated to other blocks this way. For instance, if the self-adaptive system

is organized into a hierarchy of decision engines, information can be communicated through the

hierarchy for non-localized scheduling decisions to be made.

4.2.2 Interfaces

The self-adaptive aspects of the system runtime will at a low-level depend on the underlying

interfaces provided by the simulator. If the implementation depends on polling registers, the

runtime will have to take a more active role in observation and information gathering; however,

if the runtime relies upon alarm triggers to be raised when certain conditions are true, then it

will take on a more passive role in observation. Fundamentally, regardless of the information

gathering process, the information should be recorded in such a way as to not impact the

decision making process. That is to say, the information gathering process should be separated

from the decision making process, and that an interface should be designed for a decision engine

to act upon gathered information uniformly outside of its own collection of information.

5 Problem Formulation

This section will expand upon the problem statement stated in section 1 by asking three central

questions. From there we will put forth a foundation toward solving these questions.

5.1 Questions

• How to monitor, make decisions, and control the hardware and software aspects of a

exascale system efficiently?

• How to resolve a multi-variable objective function using a self-aware strategy?

• How to use the TG toolchain and simulation framework as it pertains to our research and

our goal of demonstrating self-adaption?

5.2 Solution Methodology

How to monitor, make decisions, and control the hardware and software aspects

of a exascale system efficiently? The TG architecture will need to support a number of
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hardware features to enable monitoring within a block as we mentioned in detail in section 3.

From there a system runtime on TG will need to make intelligent decisions to control various

hardware features within the architecture to reduce energy consumption. This will take the

form of clock rate adjustments and clock gating/power gating of components. From a software

decision perspective, a runtime will also need to schedule tasks and move data based upon

information from monitoring the system. We mentioned briefly that this forms the basis for

an ODA loop. In TG, we foresee each block within the system having some independent ODA

loop for localized decisions. Figure 4 shows at a high level how we foresee TG mapping to an

ODA mechanism. A CE will implement an ODA loop for self-adaptation. Information will

come from various hardware and software mechanisms within the system and goals will come

from the user or program. And finally, various actions will occur in the form of adjustments to

hardware state or some type software change.

Observe

Decide

Act

PMU,
Thermal/Energy 

Sensors,
Runtime 

Information,
...

MSRs,
Runtime 
Comm.,

...

Gathering 
Metrics

Freq. Changes,
State Changes,

Data Move., 
Scheduling,

...

Power/Energy 
Goals,

Performance 
Goals,

...

Figure 4: Mapping Traleika Glacier to an observe-decide-act mechanism.

How to resolve a multi-variable objective function using a self-aware strategy?

It is important to recognize that exascale architectures are burdened with a more complicated

decision making process than what is typically seen within current generation systems. Exascale

systems must adapt to minimize energy, maximize performance, and to be reliable all at the

very same time. There are two key challenges: (1) conflict resolution, and (2) achieving multi-

dimensional efficiency [14]. As we stated previously, this is an open research problem that has

yet to be solved in the current state of the art [32]. Multi-variable problems are inherently
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difficult because the search space is too large to do an exhaustive search on and an optimal

solution is not known ahead of time (or possibly even the set of actions toward an optimal

solution). In TG the problem is even further compounded by the hierarchical and complex

nature of the system as well as because a local control engine will not have complete system

information and thus local decisions may not meet overall system goals. We foresee the need

for some form of distributed control in TG as well as a need for a system model. Ultimately

whether the solution lies in machine learning or some other type of decision making process is

currently unknown. However, it is worth noting that previous research has suggested that a

possible solution lies in using economic models as these are capable of solving for multi-variable

problems [14].

How to use the TG toolchain and simulation framework as it pertains to our re-

search and our goal of demonstrating self-adaption? At a high level, we will implement

and demonstrate adaptation within the system runtime using monitoring and decision making

processes. As we have discussed in section 3, much of the monitoring will be enabled via

the architectural features found in the TG architecture. The TG simulation framework pro-

vides a basis for monitoring the hardware aspects of the TG architecture and for modifying

the state of components. As we noted previously, many of the required features are currently

unimplemented and we will need to implement them as we move forward. Moreover, We will

need to implement an observation loop within the runtime system to gather information and

a mechanism to make and apply decisions. Ultimately, energy usage information will need to

be gathered via power modeling in order to quantify the benefits as we discussed in section

4.1.3. The following section discusses in detail our research plan on using the TG toolchain and

simulation framework.

6 Research Plan

This section will discuss our overall research plan toward a demonstration of introspection and

self-adaption within the TG runtime and simulation framework. Firstly, we will discuss our

self-adaptive research plan. Then we will discuss the current tool-chain deficiencies.

6.1 Research Venues

In this section, we discuss our vision of exascale adaptation. We start with an discussion of our

research focus of adaptation at fine-grained level and from there move toward a discussion of

adaptation at a more coarse-grained level. The former constitutes localized decisions engines

that have direct control over local resources. The latter consists of higher level decisions engines

which will largely pass high level decisions to lower level decision engines. Our plan to take a

bottom-up approach. we will focus in adapting at the block level and then eventually expand

to demonstrating adaptation using a hierarchy of decision engines.
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6.1.1 Fine-grained Adaptation

Our initial focus for self-awareness will be on power management at the block level. We plan

to use a combination of PMU counters in order to achieve energy reductions. The kinds of

decisions that we want to initially focus on are clock gating and power gating of components

as well as adjusting the frequency at the block level. For example, this could be to lower the

clock rate of a block if certain conditions are true, or to clock/power gate components that

are currently not in use. Following this, we plan to expand our focus to demonstrating I/O

management using the PMU counters.

For a small example of adaptation within TG consider Figure 5. The right side shows a

block’s state at various stages during execution. The left side shows three distinct decisions

occurring between those stages. In the example, all blocks are initially enabled. However, the

CE observes that only two scheduled tasks are currently running and from there decides to

disable the unused XEs. This decision is then translated into an action of writing to each XE’s

Clock Control to put them into a clock gated state. Next, the CE observes that there are many

remote DMA operations occurring and decides to lower the frequency of the block to conserve

energy. This decision is then translated into an action of writing to the Block Frequency Control.

Finally, the CE observes that there are no floating point operations occurring within the second

XE and decides to power gate the FP functional unit. This decision is then translated into an

action of writing to the XE Power Control.

6.1.2 Coarse-Grain Adaptation

One of our far-term goals it to implement a form of hierarchical management or non-localized

adaptation. For this, we would use the communication subsystems discussed in section 4.2.1.

In terms of energy and performance, it will be important to be able to generalize localized

information about specific sections of the system and to communicate that information without

transferring large amounts of data. In short, CEs will need to aggregate their local information

and to package it into condensed form for usage by nodes higher up in the hierarchy. This

aggregated information would include the health and resource allocations in subsections of

the system. The higher-level nodes would be tasked with making decisions based upon this

information. For example, whether to allocate data or schedule a task to a particular section

of the system.

6.2 Addressing Tool-chain Deficiencies

Our current and short-term focus is on addressing some of the deficiencies within the tool-chain.

Moving forward, this will be an iterative process. Firstly, we will address some of the more

pressing issues and then begin to focus on our research avenues. This subsection is organized

into a discussion of simulator and runtime extensions.
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Figure 5: An example of adaptation within Traleika Glacier. Shown is the TG runtime making

decisions at the block level and the corresponding block state after each decision.
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6.2.1 Simulator Extensions

As discussed in section 4.1.1, there are two ways to access PMU information. The first is

polling and the second is interrupt triggering when a specified threshold is reached. In the

short term, we will focus on evaluating and correcting any issues with the current register

polling implementation. This will largely entail adding any missing counters we need. In the

future, once we have small demonstration of the CE performing some type of adaptation within a

block, we will focus on the on the ultimate goal to have a working threshold triggering/interrupt

implementation.

As we noted in section 4.1.1, the alarm condition register can be overwritten by further

alarms before the CE is able to process the original alarm. Moreover, for the PMU in par-

ticular, the PMU Trigger Flag registers can also be overwritten in the same manner. These

are maskable registers with a bit field for each type of PMU trigger event. This means that

multiple triggers for the same event could occur before the CE processes the interrupt which

would result information loss. Furthermore, it is also possible that events that are written by

a XE while the CE is concurrently processing a PMU interrupt could be lost because the CE

is responsible for clearing the trigger register in software. For the simulator, these issues are

primarily only a concern if an XE is not put into a clock gated state when an alarm occurs.

6.2.2 Runtime Extensions

Runtime extensions will be in three areas. The first is to develop and implement interfaces that

allow retrieval and aggregation of PMU and other monitored information. The second is to

develop interfaces to allow adjustment of actuators (clock rates, core state, etc.). And the third

is to develop a mechanism to make decisions based upon the aggregated information. Together,

this will form the basis of an observe-decide-act loop.

In the far-term, we will need to design and implement mechanisms to generalize and share

information between control engines. This will require an appropriate communication layer

and a formulation of how to generalize information in a useful and concise manner for remote

decision engines to act upon.

7 Related Work

This section discusses previous and related works in self-adaptation. First, we discuss a number

of different approaches to adaptation. These fall into three categories: “Application Centric

Adaptation,” “Component Centric Adaptation,” and “System Centric Adaptation.” Following

that, we discuss a state of the art self-adaptive framework. Finally, we discuss the aspects of

exascale adaptation that make it fundamentally different from prior research.
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7.1 Application Centric Adaptation

Application centric approaches focus on adaption for specific applications or a subclass of

applications within a given domain. Quality of service (QoS) is one large area of active research

[1, 7, 18, 26, 45] due to the real time requirements and the ever changing field of computing

resources. Many new works focus on cloud computing in particular [22, 42]. Other works

focus on changing application specific algorithm policy [40]. Some approaches are more akin to

toolkits designed for application programmers to use to enable adaptation within their software

[12, 13]. Many of these approaches listed incorporate some form of classical control theory

because of various provable guarantees such as stability and linearity, etc.; however, in more

recent years, there has also been a shift toward heuristic based tuning and machine learning

techniques [27].

7.2 Component Centric Adaptation

Component centric approaches are a form of adaptation that focuses on monitoring and adapt-

ing a particular component or resource of a system. For example, there has been research in

adapting cache policies [19], dynamic reconfiguration of memory hierarchies [5], self-optimizing

memory controllers [17], and online cache modeling [43].

7.3 System Centric Adaptation

System centric approaches focus on adaptation at the system level. Historically the role of

resource management has been given to the operating system (OS). In the case of highly parallel

systems, we can divide these approaches into several categories: full OSes, lightweight kernels,

micro kernels, and high-level runtime systems.

Full OSes High-performance systems which use so-called Full OSes take advantage of off-

the-shelf systems, and tune them to reduce system noise. Such approaches are often embodied

in cluster-like environments [38]. Even on dedicated supercomputers, these approaches have

been followed, as they provide a programming environment which allows for maximal flexibil-

ity. However, such systems are in general ill-prepared for the requirements of future extreme-

scale/exascale high-performance environments: their control over the power envelope is only at

a very coarse-granularity; resilience is left to third party systems, and is not considered as part

of the whole; they are oblivious of the needs of the application they host; etc. Finally, full OSes

leave very little room for specialization.

Light-Weight Kernels Another approach is to rely on so-called light-weight kernels or LWKs

[11, 6]. LWKs offer many advantages over full OSes: They are usually written from scratch,

and only reimplement features needed for an HPC environment. The source code being much

smaller, means bugs are easier to track and fix. Finally, being specialized kernels, they usually
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emit very little noise when running an application on top of LWKs. They also do expose

significant limitations: they very often require the user to learn a new API to communicate

with the system; if a feature usually provided by full OSes is missing from the LWK, the user’s

application may not be portable to the system. In general, the application programmer does

require features found in traditional OSes. Some LWKs do forward calls to “missing” features

to a “heavier” kernel however.

Micro-Kernels Micro-kernels strip down the OS to its bare minimum (i.e. address space

management, process/thread management, inter-process communications). This quintessential

kernel runs in privileged mode (e.g. ring0 on x86 architectures), while providing “servers” or

“satellites” which enrich the overall system with additional features, but in an unprivileged

mode (for example, a file system driver). Micro-kernel OSes have shown they could be robust

and thus fulfill the resiliency and maybe even the power and energy requirements (as only the

required services are running).

New approaches try to revive micro-kernels, and remove the “layers” that used to make

them slow [3, 21, 29, 31]. Indeed, message-driven communication in micro-kernels tend to

suit multi and many core systems very well. However, there is no approach (to the best of

our knowledge) that tries to provide a holistic view of our three target goals (performance,

power/energy, resiliency), for different granularities. However the latest efforts around micro-

kernels have evolved toward a “library-oriented” type of operating systems [2]. Such approaches

tend to have goals that are closer to our own.

High-level Runtime Systems High level runtime systems typically implement some form

of resource management on top of an existing OS. Typically they intend to provide some type

of policy management that doesn’t exist in the underlying OS. Some focus on providing QoS of

system resource [24, 25, 35] or provide resource management with dynamic policies [44]. Others

are in the form of languages or frameworks that provide mechanism for an application to adapt

[9, 15, 30, 36].

7.4 State of the Art

The current trend in adaptive computing has been to focus on energy adaptation in some form

[4, 37] as this is integral for low power domains and now increasingly for exascale. Recent

research in the field [14] has focused on both energy and performance adaptation using a notion

of “application heartbeats.” These allow for an application to communicate goals to a system

as well as progress toward those goals. The results have shown that various applications can be

instrumented with heart beats and are capable of adapting to meet both energy and performance

goals.
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7.5 Limitations of Current Work

There are a number of shortcomings that need to be addressed for exascale architectures. Ap-

plication and component centric approaches lack a wholistic view of adaptation. A coordination

between system resources, components, and applications will be integral at the exascale level.

Moreover, current system centric approaches lack fine-grained control over components due to

limitations in hardware. Exascale architectures will need to adjust the state of components

at a very fine granularity in order to conserve energy and to meet power envelopes. This also

means that applications will need to become first class citizens in the sense that their goals will

need to be accounted for by a self-adapting system. The state of the art research has shown

interest in this aspect, but the current research does not resolve the open problem of multiple

conflicting goals or of hierarchical non-localized self-adaptation.
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